
Package: microsynth (via r-universe)
August 23, 2024

Title Synthetic Control Methods with Micro- And Meso-Level Data

Version 2.0.44

Description A generalization of the 'Synth' package that is designed
for data at a more granular level (e.g., micro-level). Provides
functions to construct weights (including propensity score-type
weights) and run analyses for synthetic control methods with
micro- and meso-level data; see Robbins, Saunders, and Kilmer
(2017) <doi:10.1080/01621459.2016.1213634> and Robbins and
Davenport (2021) <doi:10.18637/jss.v097.i02>.

License GPL-3

VignetteBuilder knitr

Additional_repositories https://ssdavenport.github.io/drat

Encoding UTF-8

RoxygenNote 7.2.3

Suggests knitr, LowRankQP, MASS, rmarkdown, xlsx

Imports kernlab, methods, parallel, pracma, stats, survey, utils

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Author Michael Robbins [aut, cre], Steven Davenport [aut]

Maintainer Michael Robbins <mrobbins@rand.org>

Date/Publication 2023-06-30 08:30:06 UTC

Repository https://michaelwrobbins.r-universe.dev

RemoteUrl https://github.com/cran/microsynth

RemoteRef HEAD

RemoteSha e28182a7f55b88994327c3ef8a36b88e84fbf6fe

1

https://doi.org/10.1080/01621459.2016.1213634
https://doi.org/10.18637/jss.v097.i02
https://ssdavenport.github.io/drat

2 microsynth

Contents
microsynth . 2
plot_microsynth . 12
print.microsynth . 15
seattledmi . 16
summary.microsynth . 17

Index 19

microsynth Synthetic control methods for disaggregated, micro-level data.

Description

Implements the synthetic control method for micro-level data as outlined in Robbins, Saunders,
and Kilmer (2017). microsynth is designed for use in assessment of the effect of an intervention
using longitudinal data. However, it may also be used to calculate propensity score-type weights
in cross-sectional data. microsynth is a generalization of Synth (see Abadie and Gardeazabal
(2003) and Abadie, Diamond, Hainmueller (2010, 2011, 2014)) that is designed for data at a more
granular level (e.g., micro-level). For more details see the help vignette: vignette('microsynth',
package = 'microsynth').

microsynth develops a synthetic control group by searching for weights that exactly match a treat-
ment group to a synthetic control group across a number of variables while also minimizing the
discrepancy between the synthetic control group and the treatment group across a set second set
of variables. microsynth works in two primary steps: 1) calculation of weights and 2) calcula-
tion of results. Time series plots of treatment vs. synthetic control for pertinent outcomes may be
performed using the function plot.microsynth().

The time range over which data are observed is segmented into pre- and post-intervention periods.
Treatment is matched to synthetic control across the pre-intervention period, and the effect of the in-
tervention is assessed across the post-intervention (or evaluation) period. The input end.pre (which
gives the last pre-intervention time period) is used to delineate between pre- and post-intervention.
Note that if the intervention is not believed to have an instantaneous effect, end.pre should indicate
the time of the intervention.

Variables are categorized as outcomes (which are time-variant) and covariates (which are time-
invariant). Using the respective inputs match.covar and match.out, the user specifies across which
covariates and outcomes (and which pre-intervention time points of the outcomes) treatment is to
be exactly matched to synthetic control. The inputs match.covar.min and match.out.min are
similar but instead specify variables across which treatment is to be matched to synthetic control as
closely as possible. If there are no variables specified in match.covar.min and match.out.min,
the function calibrate() from the survey package is used to calculate weights. Otherwise, the
function LowRankQP() from the package of the same name is used, if it is available on the user’s
machine (it is now in the CRAN archive, so would need to be installed by other means). If the
LowRankQP package is unavailable, it will use ipop() from the kernlab package. In the event that
the model specified by match.covar and match.out is not feasible (i.e., weights do not exist that
exactly match treatment and synthetic control subject to the given constraints), a less restrictive
backup model is used.

microsynth 3

microsynth has the capability to perform statistical inference using Taylor series linearization, a
jackknife and permutation methods. Several sets of weights are calculated. A set of main weights
is calculated that is used to determine a point estimate of the intervention effect. The main weights
can also be used to perform inferences on the point estimator via Taylor series linearization. If
a jackknife is to be used, one set of weights is calculated for each jackknife replication group,
and if permutation methods are to be used, one set of weights is calculated for each permutation
group. If treatment and synthetic control are not easily matched based upon the model outlined
in match.covar and match.out (i.e., an exact solution is infeasible or nearly infeasible), it is
recommended that the jackknife not be used for inference.

The software provides the user the option to output overall findings in an Excel file. For each
outcome variable, the results list the estimated treatment effect, as well as confidence intervals of
the effect and p-values of a hypothesis test that assesses whether the effect is zero. Such results are
produced as needed for each of the three methods of statistical inference noted above. microsynth
can also apply an omnibus test that examines the presence of a treatment effect jointly across several
outcomes.

Usage

microsynth(
data,
idvar,
intvar,
timevar = NULL,
start.pre = NULL,
end.pre = NULL,
end.post = NULL,
match.out = TRUE,
match.covar = TRUE,
match.out.min = NULL,
match.covar.min = NULL,
result.var = TRUE,
omnibus.var = result.var,
period = 1,
scale.var = "Intercept",
confidence = 0.9,
test = "twosided",
perm = 0,
jack = 0,
use.survey = TRUE,
cut.mse = Inf,
check.feas = FALSE,
use.backup = FALSE,
w = NULL,
max.mse = 0.01,
maxit = 250,
cal.epsilon = 1e-04,
calfun = "linear",
bounds = c(0, Inf),

4 microsynth

result.file = NULL,
printFlag = TRUE,
n.cores = TRUE,
ret.stats = FALSE

)

Arguments

data A data frame. If longitudinal, the data must be entered in tall format (e.g., at the
case/time-level with one row for each time period for each case). Missingness
is not allowed. All individuals must have non-NA values of all variables at all
time points.

idvar A character string that gives the variable in data that identifies multiple records
from the same case.

intvar A character string that gives the variable in data that corresponds to the in-
tervention variable. The intervention variable indicates which cases (and times)
have received the intervention. The variable should be binary, with a 1 indicating
treated and 0 indicating untreated. If end.pre is specified, a case is considered
treated if there is 1 or more non-zero entries in the column indicated by intvar
for that case (at any time point). If end.pre is not specified, an attempt will be
made to use intvar to determine which time periods will be considered post-
intervention (i.e., the times contained in the evaluation period). In this case, the
evaluation period is considered to begin at the time of the first non-zero entry in
intvar).

timevar A character string that gives the variable in data that differentiates multiple
records from the same case. Can be set to NULL only when used with cross-
sectional data (i.e., with one observation per entry in idvar).

start.pre An integer indicating the time point that corresponds to the beginning of the
pre-intervention period used for matching. When start.pre = NULL (default),
it is reset to the minimum time appearing in the column given by timevar. If
match.out (and match.out.min) are given in list format, start.pre is ignored
except for plotting.

end.pre An integer that gives the final time point of the pre-intervention period. That
is, end.pre is the last time at which treatment and synthetic control will be
matched to one another. All time points following end.pre are considered to
be post-intervention and the behavior of outcomes will be compared between
the treatment and synthetic control groups across those time periods. Setting
end.pre = NULL will begin the post-intervention period at the time that corre-
sponds to the first non-zero entry in the column indicated by intvar.

end.post An integer that gives the maximum post-intervention time that is taken into when
compiling results. That is, the treatment and synthetic control groups are com-
pared across the outcomes listed in result.var from the first time following the
intervention up to end.post. Can be a vector (ordered, increasing) giving mul-
tiple values of end.post. In this case, the results will be compiled for each entry
in end.post. When end.post = NULL (the default), it is reset to the maximum
time that appears in the column given by timevar.

microsynth 5

match.out Either A) logical, B) a vector of variable names that indicates across which time-
varying variables treatment is to be exactly matched to synthetic control pre-
intervention, or C) a list consisting of variable names and timespans over which
variables should be aggregated before matching. Note that outcome variables
and time-varying covariates should be included in match.out.
If match.out = TRUE (the default), it is set equal to result.var; if match.out
= NULL or match.out = FALSE, no outcome variables are factored into the cal-
culation of weights. If match.out is passed a vector of variable names, then
weights are calculated to match treatment and synthetic control for the value of
each variable that appears in match.out at each time point from start.pre to
end.pre. Otherwise, to allow more flexibility, match.out may also be a list
that gives an outcome-based model outlining more specific constraints that are
to be exactly satisfied within calibration weighting. In this case, each entry of
match.out is a vector of integers, and the names of entries of match.out are
the outcome variables to which the vectors correspond. Each element of the
vectors gives a number of time points that are to be aggregated for the respective
outcome, with the first element indicating time points immediately prior the be-
ginning of the post-intervention period. The sum of the elements in each vector
should not exceed the number of pre-intervention time periods in the data.
The following examples show the proper formatting of match.out as a list. As-
sume that there are two outcomes, Y1 and Y2 (across which treatment is to
be matched to synthetic control), and end.pre = 10 (i.e., the post-intervention
period begins at time 11). Let match.out = list('Y1' = c(1, 3, 3), 'Y2'=
c(2,5,1)). According to this specification, treatment is to be matched to syn-
thetic control across: a) The value of Y1 at time 10; b) the sum of Y1 across
times 7, 8 and 9; c) the sum of Y1 across times 4, 5 and 6; e) The sum of
Y2 across times time 9 and 10; e) the sum of Y2 across times 4, 5, 6, 7, and
8; f) the value of Y2 at time 3. Likewise, if match.out = list('Y1' = 10,
'Y2'= rep(1,10)), Y1 is matched to synthetic control the entire aggregated
pre-intervention time range, and Y2 is matched at each pre-intervention time
point individually.

match.covar Either a logical or a vector of variable names that indicates which time invariant
covariates are to be used for weighting. Weights are calculated so that treatment
and synthetic control exactly match across these variables. If match.covar =
TRUE, it is set equal to a vector of variable names corresponding to the time
invariant variables that appear in data. If match.covar = FALSE, it is set to
NULL (in which case no time-invariant variables are used for matching when
calculating weights).

match.out.min A vector or list of the same format as match.out that is used to specify addi-
tional time-varying variables to match on, but which need not be matched ex-
actly. Weights are calculated so the distance is minimized between treatment and
synthetic control across these variables. If match.out.min = NULL, no outcome-
based constraints beyond those indicated by match.out are imposed (i.e., all
outcome variables will be matched on exactly).

match.covar.min

A vector of variable names that indicates supplemental time invariant variables
that are to be used for weighting, for which exact matches are not required.

6 microsynth

Weights are calculated so the distance is minimized between treatment and syn-
thetic control across these variables.

result.var A vector of variable names giving the outcome variables for which results will
be reported. Time-varying covariates should be excluded from result.var. If
result.var = TRUE (the default), result.var is set as being equal to all time-
varying variables that appear in data. If result.var = NULL or result.var =
FALSE, results are not tabulated.

omnibus.var A vector of variable names that indicates the outcome variables that are to be
used within the calculation of the omnibus statistic. Can also be a logical in-
dicator. When omnibus.var = TRUE, it is reset as being equal to result.var.
When omnibus.var = NULL or omnibus = FALSE, no omnibus statistic is calcu-
lated. omnibus.var should not contain elements not in result.var.

period An integer that gives the granularity of the data that will be used for plotting
and compiling results. If match.out and match.out.min are provided a vector
of variable names, it will also affect the calculation of weights used for match-
ing. In this case, matching of treatment and synthetic control is performed at a
temporal granularity defined by period. For instance, if monthly data are pro-
vided and period = 3, data are aggregated to quarters for plots and results (and
weighting unless otherwise specified). If match.out and match.out.min are
provided a list, period only affects plots and how results are displayed.
Note that plotting is performed with plot.microsynth(); however, a microsynth
object is required as input for that function and period should be specified in
the creation of that object.

scale.var A variable name. When comparing the treatment group to all cases, the lat-
ter is scaled to the size of the former with respect to the variable indicated by
scale.var. Defaults to the number of units receiving treatment (i.e., the inter-
cept).

confidence The level of confidence for confidence intervals.
test The type of hypothesis test (one-sided lower, one-sided upper, or two-sided) that

is used when calculating p-values. Entries of 'lower', 'upper', and 'twosided'
are recognized.

perm An integer giving the number of permutation groups that are used. If perm =
0, no permutation groups are generated, permutation weights are not calculated,
and permutations do not factor into the reported results. perm is set to the num-
ber of possible permutation groups if the former exceeds the latter.

jack An integer giving the number of replication groups that are used for the jack-
knife. jack can also be a logical indicator. If jack = 0 or jack = FALSE, no
jackknife replication groups are generated, jackknife weights are not calculated,
and the jackknife is not considered when reporting results. If jack = TRUE, it is
reset to being equal to the minimum between the number of total cases in the
treatment group and the total number of cases in the control group. jack is also
reset to that minimum if it, as entered, exceeds that minimum.

use.survey If use.survey = TRUE, Taylor series linearization is applied to the estimated
treatment effect within each permutation group. Setting use.survey = TRUE
makes for better inference but increases computation time substantially. Confi-
dence intervals for permutation groups are calculated only when use.survey =
TRUE.

microsynth 7

cut.mse The maximum error (given as mean-squared error) permissible for permutation
groups. Permutation groups with a larger than permissible error are dropped
when calculating results. The mean-squared error is only calculated over con-
straints that are to be exactly satisfied.

check.feas A logical indicator of whether or not the feasibility of the model specified by
match.out is evaluated prior to calculation of weights. If check.feas = TRUE,
feasibility is assessed. If match.out is found to not specify a feasible model,
a less restrictive feasible backup model will be applied to calculate the main
weights and for jackknife and permutation methods.

use.backup A logical variable that, when true, indicates whether a backup model should be
used whenever the model specified by match.out yields unsatisfactory weights.
Weights are deemed to be unsatisfactory if they do not sufficiently satisfy the
constraints imposed by match.out and match.covar. Different backup models
may be used for each of the main, jackknife or permutation weights as needed.

w A microsynth object or a list of the form as returned by a prior application
of microsynth. If w = NULL, weights are calculated from scratch. Entering a
non-NULL value affords the user the ability to use previously calculated weights.

max.mse The maximum error (given as mean-squared error) permissible for constraints
that are to be exactly satisfied. If max.mse is not satisfied by these constraints,
and either check.feas = TRUE or use.backup = TRUE, then back-up models are
used.

maxit The maximum number of iterations used within the calibration routine (calibrate()
from the survey package) for calculating weights.

cal.epsilon The tolerance used within the calibration routine (calibrate() from the survey
package) for calculating weights.

calfun The calibration function used within the calibration routine (calibrate() from
the survey package) for calculating weights.

bounds Bounds for calibration weighting (fed into the calibrate() from the survey
package).

result.file A character string giving the name of a file that will be created in the home
directory containing results. If result.file = NULL (the default), no file is cre-
ated. If end.post has length 1, a .csv file is created. If end.post has length
greater than one, a formatted .xlsx file is created with one tab for each element
of end.post. If result.file has a .xlsx (or .xls) extension (e.g., the last
five characters of result.file are ’.xlsx’), an .xlsx file is created regardless of the
length of end.post.

printFlag If TRUE, microsynth will print history on console. Use printFlag = FALSE
for silent computation.

n.cores The number of CPU cores to use for parallelization. If n.cores is not spec-
ified by the user, it is guessed using the detectCores function in the parallel
package. If TRUE (the default), it is set as detectCores(). If NULL, it is set as
detectCores() - 1. If FALSE, it is set as 1, in which case parallelization is not
invoked. Note that the documentation for detectCores makes clear that it is
not failsafe and could return a spurious number of available cores.

ret.stats if set to TRUE, returns four additional elements: stats, stats1, stats2 and
delta.out.

8 microsynth

Details

microsynth requires specification of the following inputs: data, idvar, intvar. data is a longi-
tudinal data frame; idvar and intvar are character strings that specific pertinent columns of data.
In longitudinal data, timevar should be specified. Furthermore, specification of match.out and
match.covar is recommended.

microsynth can also be used to calculate propensity score-type weights in cross sectional data (in
which case timevar does not need to be specified) as proposed by Hainmueller (2012).

microsynth calculates weights using survey::calibrate() from the survey package in circum-
stances where a feasible solution exists for all constraints, whereas LowRankQP::LowRankQP() is
used to assess feasibility and to calculate weights in the event that a feasible solution to all con-
straints does not exist. The LowRankQP routine is memory-intensive and can run quite slowly in
data that have a large number of cases. To prevent LowRankQP from being used, set match.out.min
= NULL, match.covar.min= NULL, check.feas = FALSE, and use.backup = FALSE.

Value

microsynth returns a list with up to five elements: a) w, b) Results, c) svyglm.stats, and d)
Plot.Stats, and e) info.

w is a list with six elements: a) Weights, b) Intervention, c) MSE, d) Model, e) Summary, and f)
keep.groups. Assume there are C total sets of weights calculated, where C = 1 + jack + perm,
and there are N total cases across the treatment and control groups. w$Weights is an N x C matrix,
where each column provides a set of weights. w$Intervention is an N x C matrix made of logical
indicators that indicate whether or not the case in the respective row is considered treated (at any
point in time) for the respective column. Entries of NA are to be dropped for the respective jackknife
replication group (NAs only appear in jackknife weights). w$MSE is a 6 x C matrix that give the MSEs
for each set of weights. MSEs are listed for the primary and secondary constraints for the first,
second, and third models. Note that the primary constraints differ for each model (see Robbins and
Davenport, 2021). w$Model is a length-C vector that indicates whether backup models were used in
the calculation of each set of weights. w$keep.groups is a logical vector indicating which groups
are to be used in analysis (groups that are not used have pre-intervention MSE greater than cut.mse.
w$Summary is a three-column matrix that (for treatment, synthetic control, and the full dataset),
shows aggregate values of the variables across which treatment and synthetic control are matched.
The summary, which is tabulated only for the primary weights, is also printed by microsynth while
weights are being calculated.

Further, Results is a list where each element gives the final results for each value of end.post.
Each element of Results is itself a matrix with each row corresponding to an outcome variable
(and a row for the omnibus test, if used) and each column denotes estimates of the intervention
effects and p-values, upper, and lower bounds of confidence intervals as found using Taylor series
linearization (Linear), jackknife (jack), and permutation (perm) methods where needed.

In addition, svyglm.stats is a list where each element is a matrix that includes the output from
the regression models run using the svyglm() function to estimate the treatment effect. The list
has one element for each value of end.post, and the matrices each have one row per variable in
result.var.

Next, Plot.Stats contains the data that are displayed in the plots which may be generated using
plot.microsynth(). Plot.Stats is a list with four elements (Treatment, Control, All, Differ-
ence). The first three elements are matrices with one row per outcome variable and one column

microsynth 9

per time point. The last element (which gives the treatment minus control values) is an array
that contains data for each permutation group in addition to the true treatment area. Specifically,
Plot.Stats$Difference[,,1] contains the time series of treatment minus control for the true
intervention group; Plot.Stats$Difference[,,i+1] contains the time series of treatment minus
control for the i^th permutation group.

Next, info documents some input parameters for display by print(). A summary of weighted
matching variables and of results can be viewed using summary

Lastly, if ret.stats is set to TRUE, four additional elements are returned: stats, stats1, stats2
and delta.out. stats contains elements with the basic statistics that are the same as the main
microsynth output: outcomes in treatment, control and percentage change. stats1 are the estimates
of svyglm() adjusted by their standard errors. stats2 is the percent change in the observed value
from each outcome from the hypothetical outcome absent intervention. delta.out is a Taylor series
linearization used to approximate the variance of the estimator.

References

Abadie A, Diamond A, Hainmueller J (2010). Synthetic control methods for comparative case
studies: Estimating the effect of California’s tobacco control program.? Journal of the American
Statistical Association, 105(490), 493-505.

Abadie A, Diamond A, Hainmueller J (2011). Synth: An R Package for Synthetic Control Methods
in Comparative Case Studies.? Journal of Statistical Software, 42(13), 1-17.

Abadie A, Diamond A, Hainmueller J (2015). Comparative politics and the synthetic control
method. American Journal of Political Science, 59(2), 495-510.

Abadie A, Gardeazabal J (2003). The economic costs of conflict: A case study of the Basque
Country.? American Economic Review, pp. 113-132.

Hainmueller, J. (2012), Entropy Balancing for Causal Effects: A Multivariate Reweighting Method
to Produce Balanced Samples in Observational Studies,? Political Analysis, 20, 25-46.

Robbins MW, Saunders J, Kilmer B (2017). A framework for synthetic control methods with high-
dimensional, micro-level data: Evaluating a neighborhood- specific crime intervention,? Journal of
the American Statistical Association, 112(517), 109-126.

Robbins MW, Davenport S (2021). microsynth: Synthetic Control Methods for Disaggregated and
Micro-Level Data in R,? Journal of Statistical Software, 97(2), doi:10.18637/jss.v097.i02.

Examples

Use seattledmi, block-level panel data, to evaluate a crime intervention.

Declare time-variant (outcome) and time-invariant variables for matching
cov.var <- c('TotalPop', 'BLACK', 'HISPANIC', 'Males_1521',

'HOUSEHOLDS', 'FAMILYHOUS', 'FEMALE_HOU', 'RENTER_HOU', 'VACANT_HOU')

match.out <- c('i_felony', 'i_misdemea', 'i_drugs', 'any_crime')
set.seed(99199) # for reproducibility

Perform matching and estimation, without permutations or jackknife

10 microsynth

runtime: < 1 min

sea1 <- microsynth(seattledmi,
idvar='ID', timevar='time', intvar='Intervention',
start.pre=1, end.pre=12, end.post=16,
match.out=match.out, match.covar=cov.var,
result.var=match.out, omnibus.var=match.out,
test='lower',
n.cores = min(parallel::detectCores(), 2))

View results
summary(sea1)
plot_microsynth(sea1)

Not run:
Repeat matching and estimation, with permutations and jackknife
Set permutations and jack-knife to very few groups (2) for
quick demonstration only.
runtime: ~30 min
sea2 <- microsynth(seattledmi,

idvar='ID', timevar='time', intvar='Intervention',
start.pre=1, end.pre=12, end.post=c(14, 16),
match.out=match.out, match.covar=cov.var,
result.var=match.out, omnibus.var=match.out,
test='lower',
perm=250, jack=TRUE,
result.file=file.path(tempdir(), 'ExResults2.xlsx'),
n.cores = min(parallel::detectCores(), 2))

View results
summary(sea2)
plot_microsynth(sea2)

Specify additional outcome variables for matching, which makes
matching harder.
match.out <- c('i_robbery','i_aggassau','i_burglary','i_larceny',

'i_felony','i_misdemea','i_drugsale','i_drugposs','any_crime')

Perform matching, setting check.feas = T and use.backup = T
to ensure model feasibility
runtime: ~40 minutes
sea3 <- microsynth(seattledmi,

idvar='ID', timevar='time', intvar='Intervention',
end.pre=12,
match.out=match.out, match.covar=cov.var,
result.var=match.out, perm=250, jack=0,
test='lower', check.feas=TRUE, use.backup = TRUE,
result.file=file.path(tempdir(), 'ExResults3.xlsx'),
n.cores = min(parallel::detectCores(), 2))

microsynth 11

Aggregate outcome variables before matching, to boost model feasibility
match.out <- list('i_robbery'=rep(2, 6), 'i_aggassau'=rep(2, 6),

'i_burglary'=rep(1, 12), 'i_larceny'=rep(1, 12),
'i_felony'=rep(2, 6), 'i_misdemea'=rep(2, 6),
'i_drugsale'=rep(4, 3), 'i_drugposs'=rep(4, 3),
'any_crime'=rep(1, 12))

After aggregation, use.backup and cheack.feas no longer needed
runtime: ~40 minutes
sea4 <- microsynth(seattledmi, idvar='ID', timevar='time',

intvar='Intervention', match.out=match.out, match.covar=cov.var,
start.pre=1, end.pre=12, end.post=16,
result.var=names(match.out), omnibus.var=names(match.out),
perm=250, jack = TRUE, test='lower',
result.file=file.path(tempdir(), 'ExResults4.xlsx'),
n.cores = min(parallel::detectCores(), 2))

View results
summary(sea4)
plot_microsynth(sea4)

Generate weights only (for four variables)
match.out <- c('i_felony', 'i_misdemea', 'i_drugs', 'any_crime')

runtime: ~ 20 minutes
sea5 <- microsynth(seattledmi, idvar='ID', timevar='time',

intvar='Intervention', match.out=match.out, match.covar=cov.var,
start.pre=1, end.pre=12, end.post=16,
result.var=FALSE, perm=250, jack=TRUE,
n.cores = min(parallel::detectCores(), 2))

View weights
summary(sea5)

Generate results only
sea6 <- microsynth(seattledmi, idvar='ID', timevar='time',

intvar='Intervention',
start.pre=1, end.pre=12, end.post=c(14, 16),
result.var=match.out, test='lower',
w=sea5, result.file=file.path(tempdir(), 'ExResults6.xlsx'),
n.cores = min(parallel::detectCores(), 2))

View results (including previously-found weights)
summary(sea6)

Generate plots only
plot_microsynth(sea6, plot.var=match.out[1:2])

Apply microsynth in the traditional setting of Synth
Create macro-level (small n) data, with 1 treatment unit
set.seed(86879)
ids.t <- names(table(seattledmi$ID[seattledmi$Intervention==1]))

12 plot_microsynth

ids.c <- setdiff(names(table(seattledmi$ID)), ids.t)
ids.synth <- c(base::sample(ids.t, 1), base::sample(ids.c, 100))
seattledmi.one <- seattledmi[is.element(seattledmi$ID,

as.numeric(ids.synth)),]

Apply microsynth to the new macro-level data
runtime: < 5 minutes
sea8 <- microsynth(seattledmi.one, idvar='ID', timevar='time',

intvar='Intervention',
start.pre=1, end.pre=12, end.post=16,
match.out=match.out[4],
match.covar=cov.var, result.var=match.out[4],
test='lower', perm=250, jack=FALSE,
check.feas=TRUE, use.backup=TRUE,
n.cores = min(parallel::detectCores(), 2))

View results
summary(sea8)
plot_microsynth(sea8)

Use microsynth to calculate propensity score-type weights
Prepare cross-sectional data at time of intervention
seattledmi.cross <- seattledmi[seattledmi$time==16, colnames(seattledmi)!='time']

Apply microsynth to find propensity score-type weights
runtime: ~5 minutes
sea9 <- microsynth(seattledmi.cross, idvar='ID', intvar='Intervention',

match.out=FALSE, match.covar=cov.var, result.var=match.out,
test='lower', perm=250, jack=TRUE,
n.cores = min(parallel::detectCores(), 2))

View results
summary(sea9)

End(Not run)

plot_microsynth Plotting for microsynth objects.

Description

Using a microsynth object as an input, this function gives time series plots of selected outcomes.

Usage

plot_microsynth(
ms,
plot.var = NULL,
start.pre = NULL,

plot_microsynth 13

end.pre = NULL,
end.post = NULL,
file = NULL,
sep = TRUE,
plot.first = NULL,
legend.spot = "bottomleft",
height = NULL,
width = NULL,
at = NULL,
labels = NULL,
all = "cases",
main.tc = NULL,
main.diff = NULL,
xlab.tc = NULL,
xlab.diff = NULL,
ylab.tc = NULL,
ylab.diff = NULL

)

Arguments

ms A microsynth object

plot.var A vector of variable names giving the outcome variables that are shown in plots.
If plot.var = NULL, all outcome variables that are included in ms are plotted.
Only variables contained in the input result.var as used in the creation of ms
can be plotted using plot().

start.pre An integer indicating the time point that corresponds to the earliest time period
that will be plotted. When start.pre = NULL, it is reset to the minimum time
appearing in ms.

end.pre An integer that gives the final time point of the pre-intervention period. That
is, end.pre is the last time at which treatment and synthetic control will were
matched to one another. All time points following end.pre are considered to be
post-intervention and the behavior of outcomes will be compared between the
treatment and synthetic control groups across those time periods. If end.pre =
NULL the end of the pre-intervention period will be determined from the object
ms.

end.post An integer that gives final time point that will be plotted. When end.post =
NULL (the default), it is reset to the maximum time that appears in ms.

file A character string giving the name of file that will be created in the home direc-
tory containing plots. The name should have a .pdf extension.

sep If sep = TRUE, separate plots will be generated for each outcome. Applicable
only if plots are saved to file (plot.file is non-NULL). To change display of
plots produced as output, use par.

plot.first The number of permutation groups to plot.

legend.spot The location of the legend in the plots.

height The height of the graphics region (in inches) when a pdf is created.

14 plot_microsynth

width The width of the graphics region (in inches) when a pdf is created.

at A vector that gives the location of user-specified x-axis labels. at should be a
(numeric) subset of the named time points contained in ms (e.g., colnames(ms$Plot.Stats$Treatment)).

labels A vector of the same length as at that gives the names of the labels that will be
marked at the times indicated by at in the plots.

all A scalar character string giving the unit name for cases. If NULL, a third curve
showing the overall outcome levels is not plotted.

main.tc A scalar (or a vector of the same length as plot.var) character string giving the
title to be used for the first plots (that show treatment and control). Defaults to
plot.var.

main.diff A scalar (or a vector of the same length as plot.var) character string giving
the title to be used for the second plots (that show differences between treatment
and control). Defaults to plot.var.

xlab.tc A scalar (or a vector of the same length as plot.var) character string giving
the x-axis labels to be used for the first plots (that show treatment and control).
Defaults to ''.

xlab.diff A scalar (or a vector of the same length as plot.var) character string giving
the x-axis labels to be used for the second plots (that show differences between
treatment and control). Defaults to ''.

ylab.tc A scalar (or a vector of the same length as plot.var) character string giving
the y-axis labels to be used for the first plots (that show treatment and control).
Defaults to plot.var.

ylab.diff A scalar (or a vector of the same length as plot.var) character string giving
the y-axis labels to be used for the second plots (that show differences between
treatment and control). Defaults to 'Treatment - Control'.

Details

Plots are given over both pre- and intervention time periods and shown in terms of raw outcome
values or treatment/control differences. Time series of permutation groups may be overlaid to help
illustrate statistical uncertainty.

Only required input is a parameter ms which is a microsynth object.

Value

No return value, called for side effects (i.e., to produce plots of outcome values and treatment/control
differences, with the option to write to file).

Examples

Declare time-variant (outcome) and time-invariant variables for matching
cov.var <- c('TotalPop', 'BLACK', 'HISPANIC', 'Males_1521',

'HOUSEHOLDS', 'FAMILYHOUS', 'FEMALE_HOU', 'RENTER_HOU', 'VACANT_HOU')

match.out <- c('i_felony', 'i_misdemea', 'i_drugs', 'any_crime')

set.seed(99199) # for reproducibility

print.microsynth 15

Perform matching and estimation, without permutations or jackknife
runtime: <1 min
sea1 <- microsynth(seattledmi,

idvar='ID', timevar='time', intvar='Intervention',
start.pre=1, end.pre=12, end.post=16,
match.out=match.out, match.covar=cov.var,
result.var=match.out, omnibus.var=match.out,
test='lower',
n.cores = min(parallel::detectCores(), 2))

Plot with default settings in the GUI.
plot_microsynth(sea1)

Make plots, display, and save to a single file (plots.pdf).
plot_microsynth(sea1, file = file.path(tempdir(), 'plots.pdf'), sep = FALSE)

Make plots for only one outcome, display, and save to a single file.
plot_microsynth(sea1, plot.var = 'any_crime',

file = file.path(tempdir(), 'plots.pdf'), sep = FALSE)

print.microsynth Displaying microsynth Fits and Results

Description

Print method for class ’microsynth’.

Usage

S3 method for class 'microsynth'
print(x, ...)

Arguments

x A microsynth object produced by microsynth()

... further arguments passed to or from other methods.

Value

The functions print.microsynth and summary.microsynth display information about the mi-
crosynth fit and estimation results, if available.

The output includes two parts: 1) a display of key input parameters; and 2) estimated results, in a
similar format as they appear when saved to .csv or .xlsx., once for each specified post-intervention
evaluation time.

16 seattledmi

Examples

Use seattledmi, block-level panel data, to evaluate a crime intervention.

Declare time-variant (outcome) and time-invariant variables for matching
cov.var <- c('TotalPop', 'BLACK', 'HISPANIC', 'Males_1521',

'HOUSEHOLDS', 'FAMILYHOUS', 'FEMALE_HOU', 'RENTER_HOU', 'VACANT_HOU')

match.out <- c('i_felony', 'i_misdemea', 'i_drugs', 'any_crime')
set.seed(99199) # for reproducibility

Perform matching and estimation, without permutations or jackknife
runtime: < 1 min

sea1 <- microsynth(seattledmi,
idvar='ID', timevar='time', intvar='Intervention',
start.pre=1, end.pre=12, end.post=16,
match.out=match.out, match.covar=cov.var,
result.var=match.out, omnibus.var=match.out,
test='lower',
n.cores = min(parallel::detectCores(), 2))

View results
print(sea1)

seattledmi Data for a crime intervention in Seattle, Washington

Description

The dataset contains information used to evaluate a Drug Market Intervention (DMI) occurring in
parts of Seattle, Washington in 2013. The data include 2010 block-level Census data and counts of
crime reported by the Seattle Police, by crime type. Crime data are available for one year prior to
the intervention and two years after. DMIs are an intervention intended to disrupt drug markets by
targeting enforcement priorities at specific market participants. The intervention was applied to 39
blocks in Seattle’s International District.

Usage

seattledmi

Format

A data frame with 154,272 rows and 22 columns, consisting of 9,642 unique blocks with 16 (quar-
terly) observations each. It contains the following variables:

ID unique Census block ID

summary.microsynth 17

time time unit (in quarters)

Intervention time-variant binary indicator; all treated units receive 0 pre-intervention and 1 from
the start of the intervention onward, while untreated cases receive 0s throughout

i_robbery number of robberies reported in that block-quarter (time-variant)

i_aggassau number of aggravated assaults reported

i_burglary number of burglaries reported

i_larceny number of larcenies reported

i_felony number of felony crimes reported

i_misdemea number of misdemeanor crimes reported

i_drugsale number of drug sales reported

i_drugposs number of drug possession incidents reported

i_drugs number of drug sale or possession incidents reported

any_crime number of all crimes reported

TotalPop number of residents

BLACK number of African American residents

HISPANIC number of Hispanic residents

Males_1521 number of male residents aged 15-21

HOUSEHOLDS number of households

FAMILYHOUS number of family households

FEMALE_HOU number of female-headed households

RENTER_HOU number of households occupied by renters

VACANT_HOU number of vacant housing units

Source

Demographic data obtained from the 2010 Census, and administrative crime data from the Seattle
Police Department.

summary.microsynth Summarizing microsynth Fits and Results

Description

Summary method for class ’microsynth’.

Usage

S3 method for class 'microsynth'
summary(object, ...)

18 summary.microsynth

Arguments

object A microsynth object produced by microsynth()

... further arguments passed to or from other methods.

Value

The functions print.microsynth and summary.microsynth displays information about the mi-
crosynth fit and estimation results, if available.

The output includes two parts: 1) a matching summary that compares characteristics of the treatment
to the synthetic control and the population; and 2) estimated results, in a similar format as they
appear when saved to .csv or .xlsx., once for each specified post-intervention evaluation time.

Examples

Use seattledmi, block-level panel data, to evaluate a crime intervention.

Declare time-variant (outcome) and time-invariant variables for matching
cov.var <- c('TotalPop', 'BLACK', 'HISPANIC', 'Males_1521',

'HOUSEHOLDS', 'FAMILYHOUS', 'FEMALE_HOU', 'RENTER_HOU', 'VACANT_HOU')

match.out <- c('i_felony', 'i_misdemea', 'i_drugs', 'any_crime')
set.seed(99199) # for reproducibility

Perform matching and estimation, without permutations or jackknife
runtime: < 1 min

sea1 <- microsynth(seattledmi,
idvar='ID', timevar='time', intvar='Intervention',
start.pre=1, end.pre=12, end.post=16,
match.out=match.out, match.covar=cov.var,
result.var=match.out, omnibus.var=match.out,
test='lower',
n.cores = min(parallel::detectCores(), 2))

View results
summary(sea1)

Index

∗ datasets
seattledmi, 16

microsynth, 2

par, 13
plot_microsynth, 12
print.microsynth, 15

seattledmi, 16
summary, 9
summary.microsynth, 17

19

	microsynth
	plot_microsynth
	print.microsynth
	seattledmi
	summary.microsynth
	Index

